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Motivation 

• Big data stream 
- In-Situ Analysis 

- TEM : 3GB/s image stream 

- Astrophysics data (i.e. LSST) 

- Simulation (i.e. LES-DNS) 

- Drone/Satellite image stream  

- Meta-genomics (1TB reads) 

- Sensor Networks (i.e. SmartGrid) 

 

• Streaming Analytics 
- Viable choice for high velocity 

and high volume in-situ data analytics  

- There is a clear gap between batch unsupervised learning and 

streaming unsupervised learning algorithms 

- Manifold learning has proven to outperform on high dimensional and 

complex data 
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Manifold Learning 
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Other Manifold Learning Methods:  
Diffusion Maps (DM), Local Linear Embedding (LLE), Laplacian 

Eigenmaps,  Multi-demensional Scaling (MDS), … 



Outline 

• Motivation 

• Manifold Learning 

• Feature Selection 

• Spectral Clustering 

• Applications 
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Why Feature Selection? 

• Feature Selection is crucial for high volume, velocity, and 

dimensional data analysis: 

• The goal: minimize information loss while removing the 

noise and redundancy in the feature space 

- model interpretation,  

- computational efficiency,  

- generalization ability. 
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Unsupervised Feature Selection 

• Multi-Cluster Feature Selection (MCFS [Cai et.al. 

2010]) defined the feature importance as:     

 

6 

1

2

][min XEXY t

T

tX 

n 

m 

m 

c 

X n 

c 

T

tY ][

T

tttt

T

ttSYM EEDYYDIEVDLEVD   )()( 2/1

][][][

2/1

][

]||||[ 21][ t

T

t YYYY 

tE



Streaming Challenges 

• Batch Algorithms 

- O(n2) affinity matrix construction 

- Global normalization 

- O(n3) decompositions 

 

• Streaming Algorithm Requirements 

- Only one time reading 

- Limited processing power 

- Limited memory usage 

- Handling concept drifting or trend changes 
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General Feature Weighting (batch version) 

• Simplified normalization and generalize regression        

type    
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Lasso vs Ridge 
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Lasso vs Ridge 
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Lasso vs Ridge 

• Benefit of Ridge and why is it comparable? 

- Computationally cheaper 

- We do not need to solve Ridge solution 

By product of SVD decomposition 
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Streaming SVD 

• Frequent Items 
- Capture top k frequent items from the item stream 
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Streaming SVD 

• Frequent Items 
- Capture top k frequent items from the item stream 
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By setting  
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Streaming SVD 

• Frequent Directions 
- Capture top k frequent directions from data stream 
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Streaming SVD 

• Frequent Directions 
- Capture top k frequent directions from data stream 
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Streaming SVD 

• Frequent Directions 
- Capture top k frequent directions from data stream 
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Streaming SVD 

Our extension 

- Why one at a time?  
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Streaming Feature Weighting 

18 



Experiments: Setup 
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• Baselines 

- MCFS (Multi-Cluster Feature Selection) 

- LaplacianScore 

- GFWp2 

- K-Means / Streaming K-Means 



Experiments: Regularization 
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Experiments: Effectiveness 
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Experiments: Effectiveness 
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Experiments: Scalability 
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Experiments: Concept Drift 
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Experiments: Stability 
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Experiments: Efficient Storage 
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Summary 

• Efficient 
- Space: O(mnt), Time: O(mnt l ) 

• Comparable performance of batch algorithms 

- 97~99% NMI of MCFS on text dataset 

• Adapt to concept drift 

• Theoretical support 
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Outline 

• Motivation 

• Manifold Learning 

• Feature Selection 

• Spectral Clustering 

• Applications 
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Manifold Learning 
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Other Manifold Learning Methods:  
Diffusion Maps (DM), Local Linear Embedding (LLE), Laplacian 

Eigenmaps,  Multi-demensional Scaling (MDS), … 



Spectral Clustering 
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Affinity Matrix Construction 

• Cosine kernel 

 

 

 

• Gaussian kernel approximation 
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Degree Matrix Approximation 

• Degree 

 

 

- Can construct degree matrix without affinity matrix 

- As t increase, degree is also continuously increased 
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Normalized Laplacian 

• Symmetric normalized Laplacian 

 

 

• Lemma 3.2 

- k largest eigenvectors of WSYM is equal to k 

smallest eigenvectors LSYM 
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Manifold Alignment 

• Concept drift 

- The low rank basis        is changing over 

time due to concept drift 

- Need to update learned centroids according 

to basis shift 
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Streaming Spectral Clustering 
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Streaming Spectral Clustering 
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Experiments: Setup 
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• Baselines 

- K-Means (KM) 

- Symmetric normalized spectral clustering (NJW) 

- Streaming K-Means (SKM) 

- BIRCH, HDDStr 

• SSC-1 (streaming manifold only, batch KM) 

• SSC-2 (full version, SKM) 



Experiments: NMI/Purity 
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Experiments: Concept-drift 
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• Ordered by time 

 

 

 

 

 

• Ordered by topic 



Experiments: Batch Size Stability 

40 

 



Experiments: Scalability 
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Summary 

• Efficient 
- Space: O(mnt+ml), Time: O(max{mnt l,ml2 }) 

• Comparable performance of batch algorithms 
- SSC-1: 92% NMI of NJW  

- SSC-2: two folds better than streaming algorithms 

• Adapt to concept drift 

• Theoretical support 
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Outline 

• Motivation 

• Manifold Learning 

• Feature Selection 

• Spectral Clustering 

• Applications 
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Streaming ML on Image Analysis 

• Particle growth detection and tracking 

 

 

 

 

 

 

 

 

• Nanotube Angle calculation 
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Manifold Learning with Spatio-
Temporal Data Analysis 

• Spatio-Temporal Analysis 

- Common on scientific simulation / sensor network 

data 

- Typically 100TB or more simulation output with 

Peta-scale simulation 
- DNS, LES, or any spatio-temporal simulations 

- Order of magnitude bigger with exascale machines 

- IoT and other application need to scale up 

- Working on simulation parameterization, emulation, 

outlier detection on spatio-temporal data 
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Q&As 
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